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ABSTRACT

We construct a realistic supersymmetric SU(6) grand

unified theory with a natural solution of the fine tuning

and the strong CP problems. The prediction for sin28w in

one loop order is in good agreement with experiment.
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I. INTRODUCTION

Supersymmetric grand unified theories are of interest
at present, since they can provide a partial solution to the
gauge hierarchy problem[l]. If we fine tune the parameters
of the Lagrangian at the tree level, it is not destroved by
radiative corrections. Hence, once a large mass hierarchy
is established at the tree 1level, it 1s stable under
radiative corrections[2]. Supersymmetry, by itself,
however, does not tell us why such a mass hierarchy should
be there at the tree level. 1In particular, we still need
fine tuning of parameters to one part in 1016 3t the tree
level, to keep the mass of the weak doublet higgs small
compared to its color triplet partner. One solution to this
problem is offered by the missing partner mechanism{[3], in
which the mass term for the doublet higgs is absent bDecause
of group theoretic reason. In a previous paperld] we
proposed another natural solution o©f this fine tuning
oroblem in the context of 1locally supersymmetric grand
unified theories. We also showed how to introduce a
Peccei-Quinn symmetry in this type of models, which is

spontaneously broken at 10lO

GeV. In this paper we propose a
simple realistic locally supersymmetric SU(6)}) grand unified

theory based on the ideas developed in ref.4. One loop

contribution to sinzew in this model is in very good

agreement with experiment. Also the constraint of

perturbative unification (i.e. that the gauge <¢oupling
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constant at the grand uanificaticn scale is smaller than
unity} almost uniquely forces us to the winimal model of
this kind.

In S8ec.IT of this paper we shall describe the model.
In Sec.ITII we shall study the effect of one 1loop cadiative
corrections and show how this model provides a natural

solution to the fine tuning and the strong CP problems.
The SU(6) symmetry is spontaneously broken down to SU{3)%XSU(3)

XU(l) at a scale of order 1017GeV by the vev of an adjoint

higgs. The SU(3)XSU(3)XU(1) symmetry, as well as the Peccei-

Quinn symmetry is brocken at a scale of order 1010GeV by the
vev of the fundamental higgs, the unbroken gauge group below

IOIOGeV being SU(3)XSU(2)XU(1l). This symmetry iIs broken to

SU(3XXRU(1) at a scale of order 103GeV by the vev of fundamental

higgs due to radiative corrections. In Sec.IV we shall study
‘the renormalization group equations for variocus gauge
cbgpling constants and compute the value of sinzew, grand
unification scale, and the value of the gauge coupling
constant at the grand unification scale. In Sec. V we

summarize our results, and suggest possible alterations of

this model.
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IT. THE MODEL
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The model constists of a superfield ¢ helonging to the

adjoint(35) representation of su(e), n+l pairs ofF

superfields R, R, a1}, #') (i=1,...n) belonging to the 6

—

and & representations respectively,
superfields &,, o, (1) (i=1,...n).
are three generations of quark

generation containing a 313115 and 20

. by ofb) o2 O
we denote by ,L; Qé,év Q5,5

respectively. The superpotential is,

N

and several singlet
Besides these, there
lepton fields, each
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where the mass parameters Mi are of order 1016—1017Gev. For

convenience of notation, we have dreopped all the 8SU(6)

indices 1in the above expression.

In the absence of any

supersymmetry breaking terms, the potential V, corresponding

to the above superpotential, is given by,

Z

ow/ M,

L:[
>
it

R AR (2)
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where the sum over 1 runs over the scalar components yi of
all the superfields avopearing in (1), and the sum over o
runs over all the generators of the gauge group, V has a

supersymmetric minimuam {(V=0) at,

<E>= a,m [ <HD =M

& ALL OTHER FIELDS> =0

except the vev of S(i), which is undetermined at this stage.
Here M 1is a mass parameter of the order of Ml' Mo and Mgy,
and a; and a, are constants of order unity. This breaks the
SU(6) gauge group to SU(3)xSU(3)xU(l) at a scale of order
1016—1017Gev. The fields R, ﬁ, H(i), ﬁ(i), in general,
acquire masses of order M, unless <¢1)5 trakes spacial value
which exactly cancels the mass terms of either the upper
three or the lower three components of H(i), a{i) | rThe
fields g, s(1) ana Qéf;, 015, and Q20,s remain massless at
this stage.

Let us now consider the effect of supersymmetry
breaking. Supersymmetry is assumed to be spontaneously
broken by the superhiggs mechanism[5] at a scale of order
1011GeV, giving the aravitino a mass Y“g ~ 192-193gev.
But the supersymmetry breaking takes place entirely in the

‘hidden sector', which couples to the observable sector
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(containing all the fields that appear in Eq.(l)) only
through the effect of gravityl[é6]. The net effack of
supersymmetry breaking on the observable sector is to
introduce eXplicit soft supersymmetry breaking in the

Lagrangian of the form[6],

{hb (A-3) wiy) + }:_' me Y, aW/d"gﬁh.ct}-é-rgZ {3“2 (5)

where Y; denote the scalar components of all the superfields

which appear in (1), and A is a constant of order unity,
whose precise value depends on the underlying supergravity

theory. These terms may be expressed in terms of the

superfields as follows:

d26 5 n (A-3) W(T) + & awiy! L he
S a6 { ¢ R R i

-§&fe LS F g =T F oy, &)
where,

> .
=" )
is a spurion superfield.

Let us now try to minimize the potential including
these new terms. For simplicity of discussion we shall drop
the o, Q, R and R fields from our discussion, since the
inclusion of these fields do not change any of the results
that will be discussed below. The new potential, which is

obtained by subtracting (5) from the potential given in (2),
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may be written as,

Vo= 2 amy ! | "= (my (a3 wiy) vhC)

X

2

rL Tyl Ty ®)

The minimum of the potential satisfies the condition,

ow * 2
@A - ™My J. < ‘m& (=)

if y; is either of the heavy fields ? or ®3;. This may be

illustrated by considering a simple model containing only
one field y with mass and vev of order M. The minimization

of the potential then requires that,

4w ) (2w - = (A- AN
(agz - my) ('a_(;w m&g) (A-3) "™y 2 (o)

where we have assumed <y> to be real for simplicity, and
ignored the contribution from the D term, since in the
present case it vanishes automatically if, for example <d>
is real, and <a{1)s ana <#{1)s are equal. We may solve
equation (10) iteratively, keeping in mind that 3W/3y
vanishes in the supersymmetric limit. If we start at the

point where 3W/3y vanishes, then after the first iteration
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we get 8W/3y=mgy, We may substitute this value of 9W/9y on

the right hand side of Eq. (i}, to get,

o

("—év.!- Yhdg)new ..—-_-(Q—j)h’)&zg/(g_;_g_ S )chj
(1)

since vy and Bzw/ay2 are hoth of ordec M. We may substitute

5

the new value of 3W/3v in the right hand of side of =g.{1.0)
to get back Eg. (9} again. This result may easily be
generalized to the case of more than one heavy field to get
Bg. (2) .

Let us now turn to the Fields H(i), ﬁ(i) and S(i). The
vev of the fields H{!) ana ") vanished in the
supersymmetric limit, hence there certainly exists a local
minimum of the potential at vanishing vev of these fields.
{5ince 9W/3y and myy both vanish at this point, the
derivatives of V with respect to these fields wvanish at this
point.) The vevrs of s{1) were undetermined in the exactly
supersymmetric limit, i.e. the derivative of the potential
with respect to S(i) vanished for all values of S(i). The
derivative of the new potential v with respect to g (1)
vanisherat S(i)=0, but not at other values of S(i). Hence the
potential v has a local minimum at <H{P)s=<g{i)s=c5(i)s=p,

The fact that 3W/3¢ and 3W/3%, are equal to m_®" and n &p

g g0
respsctively, instead of being zero, causes a shift of order

mg in the wvev of ¢ and @0 from their wvalues in the

upersymmetric limit.

&
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There is however, another local minimum, which is of
interest to us. To see this minimum let us write down the

full potential, ignoring the ¢, R, R and Q fields.

2.
2 a »
’——— - rﬂ&fﬁﬁl + | Eﬁ%,‘ TYB &£, l

+ Z’ [&© & ¢ o7 @, + X sM) w_ J’ﬁ‘”"'lz

n

+ Z IRY (V& +xP & + XV sH)—m
A=

}f‘*"*lz

" Z"‘ | 0((&3 Hw Hm m(} sm*"- _ mc(} (A"fﬁ’) (‘)\a @34.,‘\2 5. ¥2
AN

<+ ™, ‘i; + M ¥o) mcj C’n *3') gi T—((U(O("(“@ +O(:2(L)§_~G+O(;u _uj) H‘(*J
+'Z 'Z‘g‘ Ta g‘.&.l QZ)

In the new local minimum, S{1) takes a vev of order WM,
s0 as to keep either the upper three components or the lower
three components of H(i), g i) massless. For definiteness
we shall assume that it is the lower three components of

#{1) ghich remain massless. Hence,

o) ) PN
<SD> = - (W Fee + X F )/ + 00my) (13)
i), #(1) then acquire vev's of order Vmgm so that,

((Hm> < ﬁ‘“>) = Y?:!;(Su]>/0(d(“ + O (ng;) ("9)

SINGLET
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which makes the BW/BS(i)-mgs(i)* term small. The O(mg) and

O(m;) tarms in <s(i)> and <H(i)><ﬁ(i)> respectively are due

to the mg(A—B]W(y) term in V. ¢ and ¢0 adjusts themselves so
*

as Lo make aW/SQamQQ* and 8W/a¢0—mg¢0 terms to be of order

m<. Since now 3W/3% and BW/8¢0 terms receive extra

[{SJN &)

contribuions of order mgM from the H(i)ﬁ(i) terms, the vev
of ¢ and ¢0 are shifted by order Ny from the previous
minimum.

We may now estimate the difference in energy density

between the two minima. One source of difference is the

-y (A-5) (A &40 2 N VI Sy VI N

= -y (A-3) W, (P, P.) (15)

term ia the potential. If Ad and A@O denote the difference

in the values of ¢ and ¢, respectively in the two minima,

the contribution from (15) to the difference in the energy

density between the two minima is,

- -7 éﬁﬂ% A\ :
my (A-3) % A§c+%¥A§5§

28,
Since dW,/3® and 3W,/3¢, are of order m g™, and A® and Ad,
are of order mg' this contribution goes as mg3M-
Other major sources of the difference in energy density
between the two minima are the lFH(i)"mgH(i)*12'
|Fﬁ(i)—mg;l(i)*]2, and the -m(A-3) (W(y) W (v)) ;:erm in V.

Each of these contributions is again of order mg M. Thus the



-11- FERMILAB-PUB~83/106-THY

total difference in energy between the two :aninima is of

order mg3M. We do not attempt to compute its exact value

here, since, as we shall see in the next section, radiative

corrections produce a much larger energy difference (mqumz)

be tween these two minima.
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TII. RADIATIVE CORRECTIONS

In this section we shall study the effect of radiative
corrections to the potential discussed in Sec.II. In an
exactly supersymmetric theory, if supersymmetry is unbroken,
the only effect of radiative corrections 1is to prodace
wave-function renormalization of various fields in the
superpotential. However, due to the presence of the
eXplicit supersymmetry breaking terms given 1in (6} there
will be higher loop radiative corrections to the effective

action of the form[7],

>

S die dfé’:f’(&{}ugu,z,ﬁ) (i7)

where the function £ is a polynomial in the superfields ;i,
their covariant derivatives, and the spurion superfield n.
It was pointed out by various authors[8], that the presence
of these terms may produce masses and vev's of order Jﬁ;ﬁ of
the Ffields which had =zero mass and/or vacuum expectation
value in the exactly supersymmetric limit. In this
particualar model, the important radiatively induced terms in

the effective action, which produce such effects, are of the

form,
5 — * 3 (K -
g‘ (m} '.—S(;) j_() ( gs‘) §;~o) S(-&!) M) 4_ }\ c—.)
AT
n Z"_ (n'\z S(AJ*E (i) CF F <M ) 1 K~C’)
y ST gYcw e ST - Gs)
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where the functions f and g are of order M times
logarithmically divergent functions. Typical diagrams,
contributing to the functions E(i) and g(i) are shown in
Fig.1l. Similar terms involving the field o are also
generataed, but the effect of those terms will bhe discussed

later. There are also radiative corrections involving FQ

and F@ , bat we ignore them in our discussion, since they do
a

not qualitatively change any of the results discussed below.

We mav now eliminate the F components of variois £lelds
by using the equations of motion. The ¥ components of the

other fields are given by Eq. (3), except ¥ which 1is

(i)’
given by,

* ‘X)
F—_. — (X:;(L

<o Hm ’}V{m _‘_ma _\fuJ# (‘9)

The part of the potential, containing the ¢, ¢0, q(i), H(i)

[

and ¥(1) fie1ds is given by,

Ly 2 ; . .
a.w oy = aW - *
| 2 oy F° + 19— oy 0
~ Z
+ Z‘ { ' _ mg H(L]*‘z + ’ ow _ Hm* f

<3 rT(L) E;’;;tij Cﬂ

2% by €9 (g S92 Lhee)Em] fs®IS
aS(LJ ; J 85(:\)

oy o) ) g B (g5 4nc)

DN Z&fj Ta B_g'z (zo0)
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In order to minimize the potential, it is more

convenient to write it as,

- Z
Ow _ g F¥|° oW _ o, &5
25 639?, + oF. J

l*jl

> Claw g w*|t 4 2w my i
A= ZTi d TN ]

I w " 7(1.)*__ ™ S‘(U*(’ < }
FlZg ey £y ST

-(hq(; (A-3) wy) +h.C) + mjg T gW* ) SRy

+ Z ‘ %? éij-‘tx Qii ’Z

4
2«

@)

We may minimize the potential, remembering that the
functions f(i), g(i) are of order M, There are two
different kinds of local minimuam of the potential. In the
first kind, <H(i)>, <ﬁ(i)> are zero, and <S(i}> is

determined by minimizing,

> [ ,mé(dju,k”_ Sc/;,-#) IZ 4"‘0’\32. {‘(gujk__gu,%) S(i) ¢ K-C’-§

(22)
which produces a vev of s(1) of order M. In the secon?

class of solutions, S(l) takes a vev so that either the

lower three components or the uapper three components of

H(l), H(l) remains massless. Por definiteness, we shall
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assume that the lower three components remain massless.
{(i.e. S(l) takes the value given in (13)}). H(i), H(l) then

acquire vev of the form,

(23)

(4 G ~ ) ¥ _ (i)W O
HY = WM fnéi(s’ £4*) .
%(Lj fe)

0

o]

l

] |2 term to be of order m?
g (1) g .

Which of these two tvpes of solutions has the lower

$0 as to make the |F

energy depends on the parameters of the superpotential W.
We shall, however, assume that for each i, it is the second
tvype of solution which has the lowest energy. (Note that
the difference in energy density between the two vacua is of
order mgzmz, because of the mgz(f(i)—g(i))s(i)* term.) This
breaks the 8U(3)x5U(3)xU(l) symmetry to SU{3}x80(2)xU{1l) at

a scale of order /quflolo

GeV, since f{i)wM, and aéi)wl.
There is, however, one subtle point which is worth
mentioning. It may seem that the potential given in (21) is

independent of the relative directions of various H(lj's, S0

that the fields H(i), ﬁ(i) could take vev of the form,

; v . etz 7 1}*
}(.(-) = f}\g(,, :\[m(j (S(L)V-_ j::{-#) & }f(z" - H(q =\/;<:j(s )tj( ) g
. (1 0 (2]
o ; G 0
d [2)
. Ny
! o

C < x <1 (24)
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The value of the potential, as given in (20) and (21},
is independent of x if we do neot consider the ?Q—mQQ* and
FQ —mg@S terms. If x=0, the unbroken symmetry groun helow
109°Gev is SU(3)xSU(2)xU(l), whereas, if x+l, the unbroken
symmetry group below 1010Gev is SU(3)xU{l). The degeneracy,
however, is removed when we take into account the correction
to <d> dae to the vev of H(i), g{1), mo see this, consider

the 8W/8¢—mg¢* term appearing in (21), which is aiven by,

(-2 ) A > P A (L) oy iy -
AP las + 2 FoF+ M P+ o HYH -y 3
Azt

(2s)
Now suppose H(l), g(l) acquire vev of the Fform given in
(12). In order to minimize the potential, we need to make

small shifts 8<&> and (S((I)O) in <> and <®0> of the fo[m'

E<E> = b, m SIP> = m& b,
L

If now s(2) adiusts itself so as to make the mass oF

Héz), H;(Z) vanish, the mass of Héz), ﬁéz) (m=4,5) is of
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order mg' and in order to minimize the potential, the x of
Eq. {12) must bhe zero. Thus the unbroken subgroup below
1010Gev is SU(3)xSU(2)xU(1). Alternatively, 5(2) may adjust
itself so as to make the mass of Héz), ﬁéz) {m=4,5) vanish.
Then the % in Eg. (12) must be 1, and the unbroken symmetry
group helow 1010Gev is SU(3)xU(1l). Which of these two minima
has the lowest energy depends on the values of various
parameters. We shall assume that the 3SU0(3)xS8U(2)xU(]l)
symmetric ground state is the state of lowest energy below
1010Gev.

As we have already seen, the vev of S(i) which keeps
the 6th component of a{1) zng m(1) massless, also Xeesps the
mass of the fourth and the fifth components of H(i) and n{1)
to be of order mg. Thus we get n pairs of low nmass (fmg)
weak doublet Higus. 0f these, one particular linear
combination is absorbed by the gauge bosons corresponding to
the broken generators of the 37(3)xSU{3)xU(1l) group through
Higgs mechanism. Another linear comnbination acquires a mass
of order 1010gev through the D terms of the potential, and
becomes the part of a complete massive vector

supermultiplet. We are then left with (n-1) pairs of weak

doublet Higgs of mass v my. Some of these masses may he

driven to be negative due to radiative correctionsia]l, thus
producing a spontaneous breakdowa of the SU(2)%xU(l)
symmetry at a scale of order mgwlo3 GeV.

Let us now turn to the ¢ field. Due to its coupling to

~

the heavy field R, R, one loop radiative corrections
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generate terms in the potential of the form,

a, my F M, + b, mj ag¥* ™M, + h.C. '(27)

If we eliminate the F0 term from the potential, the

effective potential, involving the o Field is given by,
2 ¥ ® | < 3 2 . -
,3('326 + &, mcﬁ M3 , + CF&A n:‘j g7+ b, ma; O‘*MJ'F}\'(;')

+ am; ek (28)

where we have set the vev's of the R, R and the Q fields to

be zero. The potential has a minimum at,

o J-a‘.‘mdM;/B(Bz ~ g M, (29)

The gquarks get mass in the same wav as mentioned in
Ref.4. If we decompose the gquark content of the theory in
terms of representations of the 5U(5) suabgroup of 8SU({6),

: . . k
then three linear combinations of Qé(%),s’ (s=1,2,3; k=1,2)
h {k {k) : . o =
(here Q5( ) denote the part of O which transform as the 5
component of SU(5)) will combine with the three 95(15) s to
: ’
get a mass of order <H{1%>. Three orthogonal linear
combinations (QENYS.y of olkl remain massless at this
5.8 5(6),s

stage. BSimilarly, three particular linear combinations oE

QlO(lS),s and Q10(20),5 comhine with the three QIB(ZO),S to
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get masses of order <g> or <Hé1)>. Three orthogonal linear

combinations (Q?SYi‘) of 910(15) s and QlO(?O) s remain
masslass at this stage. Also, {k%) s (k=1,2; s=1,2,3)
remain massless. After the breakdown of the SU{2)¥xUu(l)

symmetry, QEhys. and QPhys. acguire masses of the form,

Phys . Phys. 2 (x) Phys. Phys. . (L)
&% @ N and &AL S

thus producing the usual 1low energy spctrum of fermions.
Besides the usual fermions, thers are two massless
S(3)x8U(2)xU{Ll) singlets per generation.

It is easy to introduce a Peccei-Quinn symmetry[9] in
this model. For example, let us consider a theorv with two
pairs of higgses with the following counling £o the guark

lepton fields:

e . z) ~
Z -E '}" ot @ &,5).(7 }{” + Yz,/_.-{- Qg),_g Qis,t' HE

A, =0

(2)
+ Yy a6 Qus,s Rooe HT + Vse Qoo s Spere T 5
G 0)

The model then has a Peccei-Quinn syvmmetry,

-0

@~

g ] -t'8
HY E’LS e ) W e & e O o VLD }{‘2’4-6 HY

¥l }

26 g Iy €21 )-?fcﬂ €zl
1.5 — éf &15‘) - &d—ld & e b C.. 6(2. 4

.

@

% J "'6')/5"
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while all the other £fields remain unchanged under this
transformation. This symmetry is broken spontanenusiy at a
scale of order 1010Gev by the vev of alil

rise to an invisible axion with decay constant of order

ﬁéi), thus giving

lOlOGeV. This falls within the narcow range of values
allowed by the present cosmologyl[l0].

The color triplet vactner of the weak doublet higgses
acquire masses of order Mw1016—1017GeV in this model. Thus,
if we want cosmological baryon production at a Leaperature
of order lOlOGeV[ll] we must introduce new color triplet
Eields. This may easily be done by introducing a pair (6,

~

5) of higgs superfields ﬁ, H with the coupling,

o~

E2)

A A )
é;, é} 5: H + 2 EE,A{- équﬂ CQunt
4.t ’
The vev (wlOLOGeV) of o produces a mass of order 1010Gev for
all components of H. The Dbarvon number mav then Dbe
generated at a temperature of order IOIOGeV through  the
decay of the higgs particle ﬁ, and also the decay of the
heavy fecmions through the intermediate higys exchange. The
complex phase in the decay amplitude may be generated dne to
the Kobayshi-Maskawa type phases, arising from the mass

matrix of the heavy Q fields.
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IV, RVOLOTION OF THE GAUGE COUPLING CONSTANTS

The calculation of slnzew in this model is slightly
more tricky than that in the usual SU(5) models, since there
is an intermediate mass scale corrasponding to the
SU(3)xSU(3)xU{L) symmetry breaking scale v. TLet I3: 9y an-
g, denote the coupling constants for the su(3)€, su(2)¥ and
U({l}) gauge dgroups respectively, below the scale v. One loop
contribution to the renormalization group equations give as

the following evolution equabkions For Mo<Hy  Ho<v,

‘fTT{53(P. - 85 (1) ,Zf Q’I’T:)(J&h“' ) (9-LnNz- 32N,

ZfTT'Eg'ZU"‘ -34,(9:2 j enl <‘th (é-~» g-.g-;\f,,_

T8 8, (™ = 8, ) TS = ek | (s~

(33)

where Nz and Nig are the number of Q fields belonging to the
5 and 10 representations of S8U(5) with mass of order mg or
less. [We find it more convenient to state the resalt in
terms of SU(5) multiplets, since in the range m <u;<y, the

heavy and the light fields fall into full SU(5) multipletsﬂ

H is the number of light higgs doublet fields. We have
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assumed that in this range there is no light color triplet

niggs.

We may use Egs. {(33) to relate the values ofF 91, 9 and
94 at a scale m, to those at the scale v. Above the scale v
the unbroken group is SU(3)xSU(3)xU(L). In this, the first
SU(3) subgroup is identical to the color subgroup, hence we
may identify its coupling constant to Ja ai v, The second

SU(3) subgroup contains su(2)%eak 45 4 subgroup. Hencte if

we Jdenote its coupling constant by 94, We may write,

§3(19) = g,(u) (34

The calculation of the coupling constant 61 of the (1)
suubgroup of SU(3)xSU(3)xU(l} in terms of the coupling
constants of the SU(3)x8U(2)xU(1l) subgroup needs some work.

Let Ti denote the generator of the 7{1) subgroup of
SU(3)x8U(2)xU(l), T, denote the generator of the (1}
sudgroup of SU(3)xSU(3)xU(1l), and T, denote the hypercharge

generator of the second SU(3) subgroup of SD{3)x5U(3)xTJ(1),

all normalized to Tr ('T.'a"[‘h) :631")‘/2' Then we may write,

771 = \IE; T - \[g; T QBSJ

Remembering that T, couples with a coupling constant g7,
T2 with a coupling constani g4, and T] with a coubling

constant 9y, we have the relation,

-~ =2

Cg.-z = —fis- gfv,-z-'l' 'é—" B @é)
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Hence,

G ()7 =S L og,e) @)
gitw) —-?C&(UJ - 3. 3

Equations (34) and (37) help us in relating the coupling
constants By §3 and ;1 of the SU(3)xSU(3)xU(l) subgroup to
those of the SU{3)xSU(2)})xU(l) subgroupn. The evolution of
these coupling constants in the range V<Uy  Mp<Mgyp are

governed by the following equations:

47 (G ()= G Ce) ) 2@ e ) (o S _an -,

-

)

b () Es ()75 =l (2n %) (o- Ne-zns- 3N

b (G =G )T Y = e () (- e amg - £

T being the number of colored higgs trinlets with mass of
order v.

Egs. {33), (34), (37) and (38) give us the evolution
aquation for all the coupling constants from M. to the grand
unificacion scale. In these equations there are altogether
three unknowns, Sinzew at mg., the intermediate scale v, and
the grand unification scale MGUT' The c¢onstraint that all

the three coupling constankts meet at the grand unification

scale give us two equations relating thesa three unknowns.
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As a result, we can solve for sin28w and Mgyt as a function
oE v. We consider the minimal model with two pairs of
higgses H(1), 7(1) (i=1,2). The addition of the extra pair
H, H, all of whose components acquirs the same mass, does
, C s . 2 .
not change the prediction for My or sin“f,. Taking
-1

GQCD(mw)=9.9 and a_t

e.m. (M) =127.56, we get the following

values of sin29w and Mgyp for different values of v:

v . ALY Ow Mot
155
1c” g 206 07 M
& . REEN21
tO- My 2t i O ™.,
<
10°% My 216 10" Mw
Ry
(o' muw 220 (o w

Thus we see that the value of sinzew, as well as the
value of MGUT is relatively insensitive to the value of v.
The best value is obtained for vwlﬂllGeV. The corresponding
GUT scale 1is of order 1017 GeV. Taking mgw103GeV, we see
that the relation v= M is satisfied within a factor of 10.
This may he obtained by adjusting various coupling
constants.

We can also calculate the value of aGUT in our theory,
but its value 1is sensitive to the masses of wvarious

particles in the model. TF we assume that <g>r<Hg>,  then

Qguyr reaches the strong coupling limit hefore we reach the
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grand unification scale, for most values of v. On the other
hand, 1if we consider <g> to be one or two orders of
magnitude higher than <H6>, then the situation 1is w@uch

better. For <G>=1011mw, we get the following values of Q...

for Aifferent values of v:

.\; O(G.U'T
1o’ my -1
10°% Muw 3- 1
10% M S-1
10" Muw -1

Thus we see that for v>1010GeV, aGUT is s5till within

the perturbative regime. The reader may wonder whether

2

higher 1loop corrections may affect the wvalue of sin‘ew,

since Oopp is not very small. However, Qgyp becomes large
only very near the grand uanification scale (for example for
v=109mw, <c>=lollmw, aééD(MGUT/10)=8'8)' hence we do not
expect the higher loop corrections to afffect the wvalue of
sin28w appreciably.

The large vev of o may be obtained hy faking a small
value of B, and large value of M3 in the superpotential (1).

An alternative possibility will be mentioned in Ehe next

section.
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V. SUMMARY AND DISCUSSIONS

In this paper we have proposed a locally supersymmetric
grand unified theory based on the 3U(%) gauge group with a
natural solution of the fine tuning problem. This model
alsc has a Peccei-Quinn symmetry, which is spontaneously
broken at a scale of order 1010-1011GeV, thus giving rise to
a harmless invisible axion, The SU(6) svmmetry is
spontanecusly broken down to SU(3)xSU{(3}xU(1l) at a scale of
order 1017gev by the vev of the adjoint Higgs, and then to
ST(3)x37(2)xU(l) at a scale of order 1819-10"lgev by the vev
of a fundamental Higgs. The SU{3)x8U(2)xU(Ll} symmetry is
thhen broken down to SU(3)xU(l) at a scale of order 103Gev
due to radiative aorrections. This model gives us a good

prediction for the value of sin29w Although the precise

value of Sinzew depends on the scale of breaking{v) of the

SU(3)x8U(3)xU()) symmetry, it is relatively insensitive ¢to

10,

this scale, and for the range 107mw<v<10 w?

it varias
bDetwsen .206 and .220. (Note that this is the allowed range
of values of v for the Peccei-Quinn svmmetry breakiag.)

The unified gauge coupling constanic at the grand
unification scale turns out to be rather large in this
q@odel. Tn fact for most of the otherwise allowed ranges of
values of the parameters of the theory, the gauge coupling
aonstant reaches the strong c¢ouprling constant before the

unification gscale. This can be prevented by suitably

adjusting the parameters of the theory. However, the
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constraint of perturbative unification puts a strong
resitriction on the addition oF any wmore light particles to
this model, since this increasses the value of Aoy

There are, however, several questions whiach  remain  to
bYe studied, the most important of which is the spontaneous
breakdown of the SU(2)¥e2Kiy(1l) symmetry. A detailed
renormalization group program is needed to study this. The
cosnological domain wall problem due to the presence of the
exact discrete symnetry group, which is a subgronp of the
Peccei-Quinn symmetry, still exists in this model. The
solution of this problem may lie in the inflationacy model
of the early universe{1l2], if the reheating temperature
after inflation is below the Peccei-Quinn phase transition,
but still not too much below it, so as to produce enough
heavy fermions and/or higgses whose Adecay may produce the
observed baryon to photon ratio of the universe. The
possibility of combining the scenario of inflationary
universe with the model developed in this paper 1is under
thvestigation. We also need a detailed studv of the
cosmological baryon production ian this model.

Finally T wish to comment on a possible alteration of
this model. As we have seen, the light partinie oontent of
the theory is almost unigquely constrained to be that of the
wminimal model proposed in Sec.TII, if we want the gauge
coupling to he small at the unification scale. We have Also

seen  that even within the context of the nminimal model, the

vev of ¢ needs to be one or two orders of magnitude higher
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than the S5U(3}x50(3)xU{1l) breaking scale, in order to ensure
the smallness of aoyp, While this can be done by keeping the
coupling constant 82 in the superpotential (1) small, and
the mass parameter My large, an alternative is to completely
discard the o, R and § Eields, and produce masses of order
1012-1013Gev for the QZO,s and the # fields by coupling them
to the fields ¢ and ¢,. This needs small coupling constants
of order 10"4—10'5, but this is not +oo annatural, since

even in the stanldard Weinberg-Salam model we *ave such small

Yukawa couplings.
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FIGURE CAPTION
Fig.l: Contribution to E(i) [Fig. (a)] and g(i) [Fig. (h}1 in

an2 loop order.
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